SIAMESE cooperates with the CDH1-like protein CCS52A1 to establish endoreplication in Arabidopsis thaliana trichomes.

نویسندگان

  • Remmy Kasili
  • Jason D Walker
  • L Alice Simmons
  • Jing Zhou
  • Lieven De Veylder
  • John C Larkin
چکیده

Endoreplication, also known as endoreduplication, is a phyogenetically widespread modified version of the cell cycle in which DNA replication is not followed by cell division. The SIAMESE (SIM) gene of Arabidopsis thaliana encodes the founding member of a novel class of plant-specific cyclin-dependent kinase (CDK) inhibitors and is a key regulator of endoreplication during the development of trichomes (shoot epidermal hairs). Here, we have identified mutations in the CCS52A1 gene as genetic modifiers of the multicellular trichome phenotype of sim mutants. Loss-of-function ccs52A1 mutations dramatically enhance the multicellularity of sim mutants trichomes in double mutants, whereas overexpression of CCS52A1 completely suppresses the sim mutant phenotype. CCS52A1 encodes a CDH1/FZR-like protein, a class of proteins that function as activators of the anaphase-promoting complex. Unicellular ccs52A1 trichomes become multicellular upon overexpression of B-type cyclin, consistent with repression of the accumulation of mitotic cyclins in the developing trichome by CCS52A1. As these M-phase-specific cyclins are known to accumulate in sim mutant trichomes, our data suggest that CCS52A1 and SIM cooperate in repressing accumulation of mitotic cyclins to establish the trichome endocycle. Comparison with endoreplication pathways in Drosophila and mammals indicates that while these organisms all use similar components to initiate endoreplication, the components are deployed differently in each organism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana.

Recessive mutations in the SIAMESE (SIM) gene of Arabidopsis thaliana result in multicellular trichomes harboring individual nuclei with a low ploidy level, a phenotype strikingly different from that of wild-type trichomes, which are single cells with a nuclear DNA content of approximately 16C to 32C. These observations suggested that SIM is required to suppress mitosis as part of the switch to...

متن کامل

BRANCHLESS TRICHOMES links cell shape and cell cycle control in Arabidopsis trichomes.

Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of ...

متن کامل

Functional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana

Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...

متن کامل

Endoreplication Controls Cell Fate Maintenance

Cell-fate specification is typically thought to precede and determine cell-cycle regulation during differentiation. Here we show that endoreplication, also known as endoreduplication, a specialized cell-cycle variant often associated with cell differentiation but also frequently occurring in malignant cells, plays a role in maintaining cell fate. For our study we have used Arabidopsis trichomes...

متن کامل

Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana

Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 185 1  شماره 

صفحات  -

تاریخ انتشار 2010